Nama : Masridho Muhammad
Kelas : 1ID10
NPM : 35413338
Membuktikan P, Q,R adalah himpunan buktikan bahwa (P ᴜ Q) n (P` n R)` = P ᴜ (Q` ᴜ R)`.
Misal :
S = {1,4,7,10,13,16,19,22,25,28}
P = {4,10,16,22,28} => P` = {1,7,13,19,25}
Q = {1,4,7,25,28} => Q` = {10,13,16,19,25}
R = {1,10,22,25,28}
Pembuktian :
(P ᴜ Q) = {1,4,7,10,16,22,25,28}
(P` n R) = {1,25}
(P` n R)` = {4,7,10,13,16,19,22,28}
- (P ᴜ Q) n (P` n R)`
= {1,4,7,10,16,22,25,28} n {4,7,10,13,16,19,22,28}
= {4,7,10,16,22,28}
P = {4,10,16,22,28}
(Q` ᴜ R) = {1,10,13,16,19,22,25,28}
(Q` ᴜ R)` = {4,7}
- P ᴜ (Q` ᴜ R)`
= {4,10,16,22,28} ᴜ {4,7}
= {4,7,10,16,22,28}
Kesimpulan :
Jadi, benar bahwa (P ᴜ Q) n (P` n R)` = P ᴜ (Q` ᴜ R)`.